Поиск в словарях
Искать во всех

Физический энциклопедический словарь - магнитнымпорядком

 

Магнитнымпорядком

магнитнымпорядком
(вз>>БH или вз>>kT).

Ферромагнетизм имеет место в в-вах с положительной обменной энергией (об>0): в кристаллах Fe, Со, Ni, ряде РЗМ (Gd, Tb, Dy, Но, Er, Tm, Yb), в сплавах и соединениях с участием этих элементов, а также в сплавах Cr, Mn и в соединениях U. Для ферромагнетизма характерна самопроизвольная намагниченность при темп-pax T<, при T> ферромагнетики переходят либо в парамагнитное, либо в антиферромагн. состояние (последнее наблюдается, напр., в нек-рых РЗМ). Однако из опыта известно, что в отсутствии внеш. поля ферромагн. тела не обладают результирующей намагниченностью (если исключить вторичное явление остаточной намагниченности). Это объясняется тем, что при H=0 ферромагнетик разбивается на большое число микроскопич. областей самопроизвольного намагничивания &mdash; доменов. Векторы намагниченности отд. доменов ориентированы так, что суммарная намагниченность ферромагнетика равна нулю. Во внеш. поле доменная структура изменяется, ферромагн. образец приобретает результирующую намагниченность (см. Намагничивание).

Антиферромагнетизм имеет место в в-вах с отрицательной обменной энергией (об<0): в кристаллах Cr и Mn, ряде РЗМ (Се, Pr, Nd, Sm, Eu), а также в многочисл. соединениях и сплавах с участием элементов переходных групп.

Крист. решётка этих в-в разбивается на т. н. подрешётки магнитные, векторы самопроизвольной намагниченности Jki к-рых либо антипараллельны (коллинеарная антиферромагн. связь), либо направлены друг к другу под углами, отличными от 0 и 180° (неколлинеарная связь, см. Магнитная структура атомная). Если суммарный момент всех магн. подрешёток в

358



антиферромагнетике равен нулю, то имеет место скомпенсиров. антиферромагнетизм; если же имеется отличная от нуля разностная самопроизвольная намагниченность, то наблюдается нескомпенсиров. антиферромагнетизм, или ферримагнетизм, к-рый реализуется гл. обр. в кристаллах окислов металлов с крист. решёткой типа шпинели, граната, перовскита и др. минералов (их наз. ферритами). Эти в-ва по электрич. св-вам — ПП и диэлектрики, по магн. св-вам они похожи на обычные ферромагнетики. При нарушении компенсации магн. моментов в антиферромагнетиках из-за слабого вз-ствия между ат. носителями М. в ряде случаев возникает очень малая самопроизвольная намагниченность в-в (~0,1% от обычных значений для феррои ферримагнетиков), к-рые наз. слабыми ферромагнетиками (напр., гематит -Fe2O3, карбонаты ряда металлов, ортоферриты; см. Слабый ферромагнетизм). Существует различие в хар-ре ат. носителей магн.. момента в феррои антиферромагнитных d и f-металлах, металлич. сплавах и соединениях и непроводящих кристаллах. В d-металлах и сплавах осн. носителями ат. магн. момента явл. эл-ны бывшего недостроенного d-слоя взолиров. атомов. Обусловленный ими ферроили антиферромагнетизм связан с проявлением обменного вз-ствия в системе коллективизированных d-электронов.

В 4 f-металлах и диэлектрич. кристаллах упорядоченные ат. магн. структуры образованы магн. моментами, локализованными вблизи узлов крист. решётки, занятых магнитно-активными ионами.

Существует также упорядоченный М. в аморфных тв. телах (в переохлаждённых жидкостях, т. н. металлических стёклах), обладающих рядом специфич. св-в, отличных от магн. св-в крист. магнетиков.

Большой интерес представляют также в-ва, названные спиновыми стёклами, в к-рых имеется ат. упорядочение, но отсутствует упорядочение локализованных атомных спиновых или орбитальных магн. моментов.

Магн. состояние ферроили антиферромагнетика во внеш. магн. поле Н определяется, помимо величины поля, ещё и предшествующими состояниями магнетика (магн. предысторией образца). Это явление наз. гистерезисом. Магн. гистерезис проявляется в неоднозначности зависимости J от Н (в наличии петли гистерезиса). Благодаря гистерезису для размагничивания образца оказывается недостаточным устранить внеш. поле, при H=0 образец сохранит остаточную намагниченность Jr. Для размагничивания образца нужно приложить обратное магн. поле Нс, к-рое наз. коэрцитивной силой. В зависимости от значения Нс различают магнитно-мягкие материалы (Hс<800 А/м или 10 Э) и магнитно-твёрдые, или высококоэрцитивные, материалы (Hс>4 кА/м или 50 Э). Jr и Нс зависят от темп-ры и, как правило, убывают с её повышением, стремясь к нулю с приближением Т к 0.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):